二代集线器主盒

美示通 CL-MA

用户手册 V1.3

目录

1	概述		2
	1-1 功能特点		2
	1-2 产品选型		7
	1-3 配件选购		
_	安装与连接		
2			
	2-1 安装		
	2-2 连接		2
3	端口说明		5
	3-1 输入输出		
	3-2 通讯接口		£
4	使用说明		
4			
	4-1 面板说明		
	4-2 操作说明		8
	4-3 参数设置	<u></u>	9
	4-3-1 串口设置		10
	4-3-2 通讯地址		10
	4-3-3 公差结果输出模式		10
	4-3-4 公差与预设值设置		
	4-3-5 数据格式与方向切换		
	4-3-6 恢复出厂设置		13
5	通讯协议		13
6	故障排除		17

1 概述

1-1 功能特点

- 1) 带显示,可自动判断故障与报警显示;
- 2) 可按键设置设备地址和串口通讯参数等;
- 3) 带 RS232 和 RS485 通讯接口,可连接电脑、PLC等, 采用 MODBUS 通讯协议;
- 4) 4 种查询模式可选(实时值、最大值、最小值、极差值);
- 5) 4 路外部输入控制实现测量数据确认、锁定、清零和输出关闭功能;
- 6) 3 路外部输出公差测试结果,可驱动外部报警灯、继电器等;
- 7) 可单独设置公差和预设值数据,预设值即把清零位置直接显示为工件标准值;
- 8) 可接 4 个测微计; 可通过接分盒, 扩展测微计数量, 最大支持 60 个测微计;
- 9) 当扩展分盒数量不超过 5 时,测微计数据更新速度为 50 次每秒,之后每增加 1 个分盒,测微计数据更新速度会逐步下降;
- 10) 可通过上位机软件 (GEZTEST 软件)实现通讯参数设置,数据采集与导出表格文件;

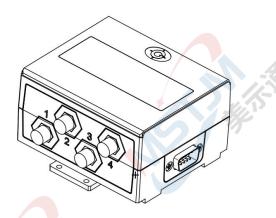
1-2 产品选型

1	型号	名称	显示与按键	通讯接口	输入控制	输出控制	备注
	CL-MA	主盒	有	有	有	有	
	CL-NA	无显示 主盒	无	无	有2路	无	外部输入仅外部清零 和外部确认可用
	CL-FA	分盒	无	无	无	无	不能单独使用

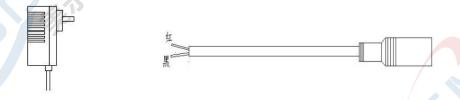
说明:

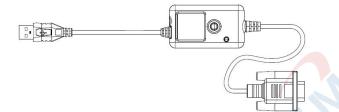

客户如果需要数据上传 PLC,或其它非电脑设备,建议加购 USB 转 232 数据线或 USB 转 485 数据线(见 1-3 配件选购),在调试时,建议用电脑先通过数据线连接集线盒,使用本公司免费软件 (GEZTEST 软件)先连通硬件,或用第三方串口调试助手软件,直接发命令检查是否有回复数据,再把数据线接到 PLC 或其它设备,检查串口助手收到的命令是否正确,最后 PLC 或其它设备再直接连集线盒。

针对原来使用旧款集线器的客户, CL-MA 有一键设置成旧款集线器的出厂默认参数, 操作如下:


CL-MA 一上电前同时按住【ESC】 键和【ENT】 键,直至上电后显示"yES"后放开,则 CL-MA 完成修改以下参数并保存:

通讯地址: 128, 串口设置: 38400, n,8,1, 数据格式: 01 格式, 参考 4-3 参数设置


1-3 配件选购


● 分盒 CL-FA

● 12V 电源与电源转换线

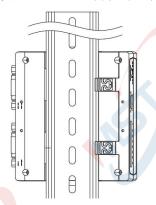
● USB 转 232 数据线 ----- 型号: <u>1010-220</u>

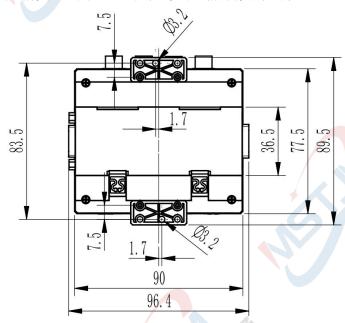
● USB 转 485 数据线 ----- 型号:

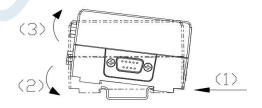
引出散线

2 安装与连接

2-1 安装

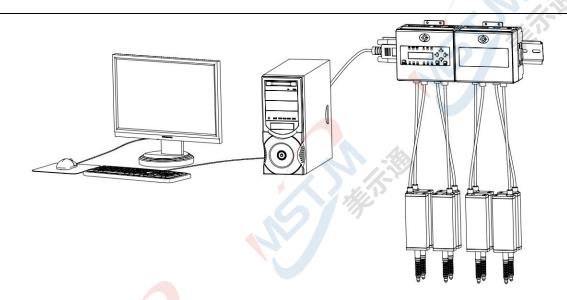

安装方式有以下2种:

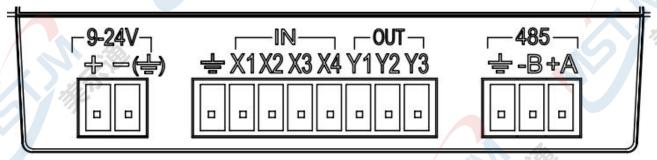

1, 轨道安装(DIN 导轨):


将集线器的调整片安装到轨道上。在箭头(1)的方向插入集线器时,用少许拉力朝箭头(2)的方向向下推入轨道上;如果需要拆下集线器时,往箭头(1)方向,用少许力拉回,朝箭头(3)方向拔起集线器。

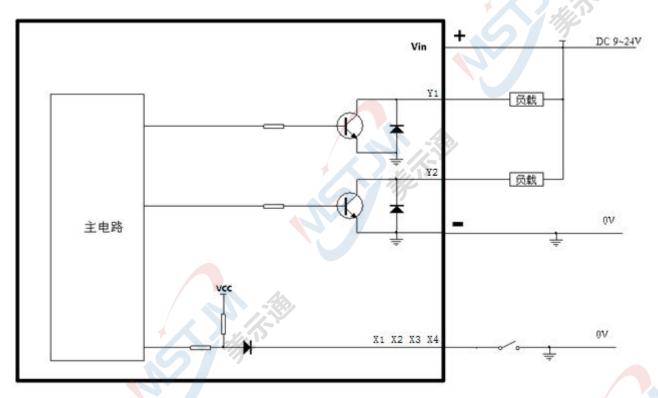
2, 螺丝安装:

箭头 1 处上 M2X4 自攻钉,将垫片与盒子连接;箭头 2 处用 M2X8 螺钉,安装到所需要的地方。

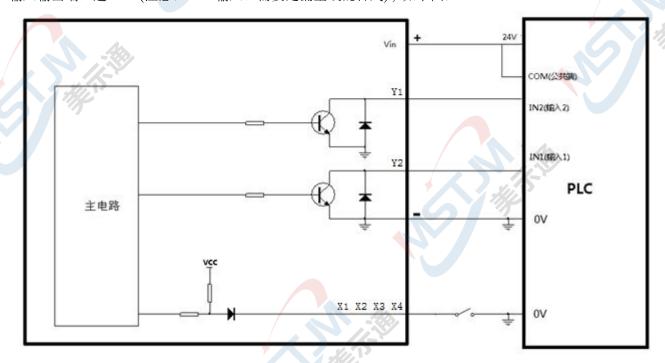



2-2 连接

连接带标准串口电脑,可直接用 RS232 串口线。连接无标准串口电脑,请用 USB 转 RS232 线,通过电脑 USB 口与集线器相连,电脑中需安装该数据线的驱动程序。 或者用 USB 转 RS485 线按定义接线。连接 PLC 与连接电脑的方式相同。


3 端口说明

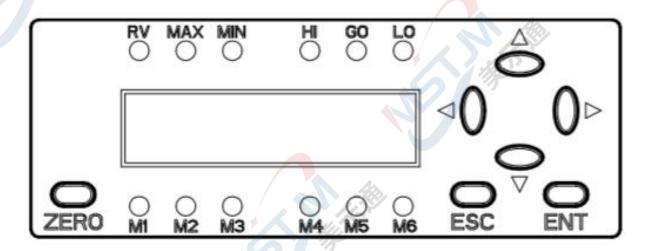
3-1 输入输出



功能	端口编号	名称	说明	备注
电源输入	+	正极	范围 9~24V,输入功率>1W;	
	- (書)	负极 GND		
	X1	输出关闭	关闭公差结果输出(针对端口 Y1, Y2)	
外部	X2	外部清零	清零所有测微计数据	输入端口与GND短路超过
输入	X3	外部锁定	锁定显示当前测微计数据	20毫秒后触发相应功能
	X4	外部确认	主动上传测微计数据;见5通讯协议	
外部	Y1	超差输出	测微计数据不在公差范围内时输出	有效时输出 0V,平时断开
输出	Y2	合格输出	测微计数据在公差范围内时输出	无输出。 (超过 200mA
	Y3	预留	577	可能触发过流保护)

显示盒输入输出 I/O 口电路图如下:

输入输出端口进 PLC (注意: PLC 输入口需要是漏型或混合式),如下图:


3-2 通讯接口

[-485 -B+A - □	6	左侧九针串口 母头 5 1 0 0 0 0 0 0 0 0 0 9 — 6	右侧九针串口 公头 5 6 9			
端口	定义	端口	定义				
编号		编号					
+A	485+	2	RS232-Tout(发)				
-B	485-	3	RS232-Rin (收)	接分盒			
÷	电源负极 GND	5	电源负极 GND				
	接上位材	几,如电脑,					
	232 与 485 不能	同时通讯					

主盒与分盒之间的连接方式参考 2-2

4 使用说明

4-1 面板说明

按键说明:

【◀】键: 查看当前测微计所在通道编号

【▶】键: 移动按键/切换设置/切换显示状态

【▲】键: 增加按键/修改按键

【▼】键: 减小按键/修改按键

【ZERO】键: 清零按键

【ENT】 键: 确认按键/设置按键

【ESC】 键: 退后按键/退出按键/退出锁定/查看故障

LED 指示灯说明

 【RV】
 实时值状态指示

 【MAX】
 最大值状态指示

 【MIN】
 最小值状态指示

【HI】 超差,不合格;在公差设置中闪动表示设置上公差

【GO】 产品合格,在公差带内;在公差设置中闪动表示设置预设值

【LO】 预留;在公差设置中闪动表示设置下公差

【M1】 故障指示

 【M2】
 自动模式指示

 【M3】
 设置状态指示

【M4】 输出状态指示 --- 【M4】亮: 外部输出开启, 【M4】灭: 外部输出关闭

【M5】 锁定状态指示 --- 【M5】闪动:数据已锁定显示

4-2 操作说明

1) 上电:

主盒接通电源后开始初始化,先显示 "-----",整个过程约 3 秒;然后开始扫描测头数量并分配地址,如显示 "-04-"表示共扫描到 4 个测微计;如果检测有故障先显示故障,2 秒后显示当前工作模式,如显示 "CH01",表示准备显示 1 号通道的测微计数据,1 秒后直接显示 1 号测微计数据;此时短按【▲】键或【▼】键可以切换显示各个通道的测微计数据

2) 数据显示:

显示屏显示数字为测头位移数据,单位为毫米,最小分辨率为 1 微米。短按【◀】键, 查询当前测微计所在通道编号,1 秒后自动回到测微计数据显示

共四种查询模式, 长按【▶】键切换,切换3秒后自动保存状态(断电保存),出厂默认为【RV】模式;

【RV】点亮	显示当前通道的测微计实时位移值
【MAX】点亮	显示当前通道的测微计最大位移值
【MIN】点亮	显示当前通道的测微计最小位移值
【MAX】【MIN】同时点亮	显示当前通道的测微计位移极差值

3) 数据清零:

短按【ZERO】键可以使显示数据清 0,当预设值不为 0,且查询模式非【MAX】【MIN】极差值时,则清零后显示预设值;关于预设值设置见 4-3-4。

.33.	【MAX】最大值【MIN】最小值
【RV】实时值	【MAX】【MIN】极差值

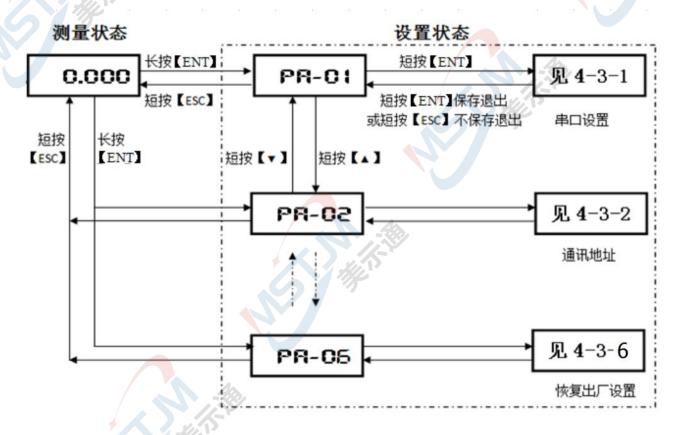
短按	将当前显示通道的测微计数据清零;	仅清除当前通道的测微计最大最小值记忆;				
【ZERO】键						
长按	将所有通道的测微计数据清零;	清除所有通道的测微计最大最小值记忆;				
【ZERO】键						
外部清零	短路端口 X2 和电源负极 GND 将所有通道的测微计数据清零;					

4) 故障显示

主盒能够自动检测故障,故障发生时主盒直接显示故障代码,同时 M1 点亮,或长按【ESC】键可以查看故障代码,故障代码显示 "EXXXXX","E"表示故障,当 X=1 时,表示此项故障,当 X=0 时,表示此项正常。

从左往右数,第 $1 \land X$ 表示输出过流故障,第 $2 \land X$ 表示上位机通讯故障,第 $3 \land X$ 表示主盒内部测微计查询模块通讯故障,最后 $2 \land 2$ 个数字表示分盒通讯故障地址。

例如:

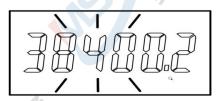

E10000: 过流报警

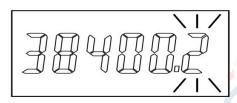
E01000: 上位机通讯故障 E00200: 2 号测微计通讯故障 E00003: 3 号分盒通讯故障

如果想退出故障显示界面,可以短按【ESC】键退出,不再主动显示故障信息;或者等待所有故障都恢复正常后延时3秒退出故障显示界面,同时下次再出现故障能主动显示故障信息。M1灭

4-3 参数设置

长按【ENT】键,【M3】点亮,进入参数设置界面;首先显示序号,短按或长按【▲】键或【▼】键可以增加或减小序号;

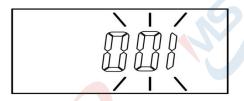



序号	功能描述	备注	出厂默认	备注
PA -01	串口设置	设置串口波特率,校验位,停止位	19200, n,8,1	见 4-3-1
PA -02	通讯地址	设置 Modbus 协议中的设备地址	16	见 4-3-2
PA -03	公差输出模式	设置端口 Y1、Y2、Y3 的输出方式	持续输出	见 4-3-3
			下公差-1.000	见 4-3-4
PA -04	公差设置	设置数据合格判定的公差范围	上公差 1.000	
			预设值 0.000	
PA -05	数据格式与方向切换	设置传感器位移数据的格式与方向	FF 格式;正向	见 4-3-5
PA -06	恢复出厂设置	设置恢复上述设置的出厂默认值		见 4-3-6

在参数设置界面下短按【ENT】键确定则进入相应序号对应的功能设置进行修改,详情见备注;

4-3-1: PA-01 串口设置

前 5 位显示表示波特率, 最后一位表示停止位, 短按【▶】键切换修改参数, 波特率可设置 4800、9600、19200、38400、115200, 短按【▲】键或【▼】键可以修改闪动的参数; 最后短按【ENT】键确定保存, 短按【ESC】键则不保存退出;



停止位可设置:"1"表示1个停止位无校验;"2"表示2个停止位无校验;"E"表示1个停止位偶校验;"O"表示1个停止位奇校验;无校验条件下,已兼容1个停止位或2个停止位

4-3-2: PA-02 通讯地址

地址设置范围 1²54, 短按【▲】键或【▼】键可以增加或减小;长按可以快速加减;最后短按【ENT】 键确定保存, 短按【ESC】键则不保存退出;

4-3-3 PA-03 公差结果输出模式

显示第 1 位表示输出模式,"0"表示持续输出模式,"1"表示外部锁定控制模式,"2"表示自动检测模式

短按【▲】键或【▼】键可以修改;最后短按【ENT】键确定保存, 短按【ESC】键则不保存退出;

1) 持续输出模式

一直保持输出状态, 不会关闭, 【M4】灯长亮, HI GO 点亮与相应外部输出保持一致

【HI】点亮:有1个或多个测微计数据超差, 对应端口 Y1 输出拉低至 GND

【GO】点亮: 所有测微计数据都在公差设置范围内, 对应端口 Y2 输出拉低至 GND

2) 外部锁定控制模式

只在外部锁定信号有效时输出, 锁定时端口 Y1、Y2 有输出, 【M4】灯亮, 解锁时端口 Y1、Y2 无输出, 【M4】灯灭,其中:

RV 状态: 锁定输入(端口 X3)接地 GND 后为锁定, 断开为解锁

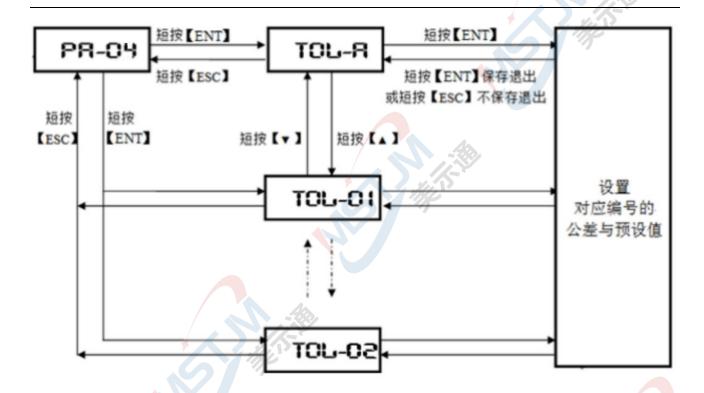
非 RV 状态:锁定输入(端口 X3)接地 GND 后立即清除记忆然后持续采集数据,直到与地 GND 断开后锁定数据显示并输出公差结果,同时【M5】闪动, 退出只能短按【ESC】键可以解锁,或者继续下一次测量

3) 自动检测模式

测微计数据在规定时间内保持稳定后才会输出,【M4】灯亮,端口 Y1、Y2 有输出,反之无输出,【M4】灯灭,此时可短按【▶】键切换设置内容,只能修改呈闪动状态的参数,其中:

- 第2位表示自动检测时间,修改范围 1~9,单位: 100ms;
- 第 3 位表示检测数据稳定变化量,修改范围 1~9,单位: 0.005mm
- 第 4 位和第 5 位表示超时输出时间,修改范围 01~99, 单位: 秒
- 第 6 位表示自动检测起点,L 表示最小值为起点,H 表示最大值为起点;**清零能清除起点记忆值** 起点定义为: 1 号测微计数据, 当离开起点 0.05mm 后开始计算测微计数据是否稳定, 才会有输出, 否则无输出。

例如:



"2.3.2.50.L"表示: 当测头数据超过最小值(起点)0.05mm 时开始计时自动判断输出,如果 0.3 秒内数据变化不超过 0.01mm,则输出公差结果,反之,不输出;但如果超过 50 秒后强行输出公差结果;

4-3-4 PA-04 公差与预设值设置

显示"TOL-A"为所有测头公差数据设置成一样;非 A下显示数字,如显示"TOL-01"~"TOL-04"则单独设置对应编号的测微计的公差数据;短按【▲】键或【▼】键可以增加或减小序号,最后短按【ENT】开始设置;

●进入设置状态

此时数字最高位和 "LO" 指示灯都闪动,数字闪动表示可以被修改,"LO" 指示灯闪动表示现在设置的是下公差

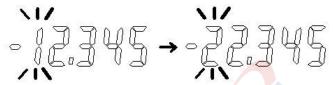
● 切换设置数据类型

按下【◀】键, "LO" 灯、"HI" 灯和 "GO" 灯依次循环闪动, "LO" 表示设置下公差; "HI"灯表示设置上公差; "GO"灯表示设置预设值,即设置清零后所显示的数值。

预设值是在零点基础上增加设定数值,每次清零后,都会显示该数值。预设值的用法是,用户把 预设值设置为标准工件的实际尺寸,当用户用标准工件来校准时,按下清零键,这时就会显示预设的 标准值,这样,测量其他工件的时就会显示被测工件的实际尺寸,而不是偏差值。

设置公差后,可自动比较上下公差的大小,下公差应该小于上公差,如果设置错误会出现错误提醒,见下图

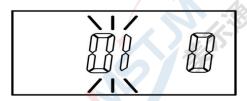
EFFFF

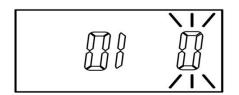

显示出错信息后,自动重新回到上公差设置状态。

● 修改设置数据

在上述三个设置状态,如果是最高位闪动,按下【▲】键或【▼】键,则在"0~9"和"一"之间切换,"一"表示可以设置负数。长按【ZERO】键可以清零设置值。

按下【▶】键:,闪烁位右移一位,可不断循环。按下【▲】键可以使闪动位置的数据加一,或按下【▼】键可以使闪动位置的数据减一,




● 退出设置

设置结束后,按下【ENT】键,"M3"指示灯灭,退出公差设置状态并保存所设置的数据。如果不想保存当前设置的数据,则短按【ESC】键退出公差设置状态。

4-3-5: PA-05 数据格式与方向切换

显示第 3 位和第 4 位表示数据格式,最后 1 位表示方向,短按【▶】键切换修改参数,短按【▲】键或【▼】键可以修改闪动的参数;最后短按【ENT】键确定保存,短按【ESC】键则不保存退出;

1) 数据格式

"01"格式表示测微计 4 个字节数据取第 1 个字节表示正负数,01 表示负数;00 表示正数;后 3 个字节组成为无符号整数,如 01 00 00 01 表示-0.001mm。

"FF" 格式表示测微计 4 个字节数据组成为 1 个 32 位有符号整数;如 ff ff ff 表示-0.001mm。

2) 方向

"0" 表示正向; 推动测杆时数据增加

"1" 表示反向: 推动测杆时数据减小

4-3-6: PA-06 恢复出厂设置

刚开始显示"no",表示取消,此时如果短按【ENT】键或【ESC】键后会退出,只能先短按【▲】键或【▼】键,显示"yES",表示确定,此时再短按【ENT】键才会恢复出厂设置后并退出;

5 通讯协议

- 采用 MODBUS RTU 模式
- 用户可一次性读取所有传感器数据,传感器数据按顺序排列在集线器数据空间中,每个传感器数据长度为两个字(四个字节),也可单独读取一路传感器数据;
- 用户可一次性置所有传感器零位,也可分别对每个传感器置零;
- 默认从站地址: 16:
- 所有传感器数据读取操作: MODBUS 功能码:03,数据起始地址: 00,数据长度: TOL*2(TOL 为传感器数量,如果是4路传感器则数据长度为8)。备注:西门子PLC数据起始地址为40001;
- 单独一路传感器数据读取: MODBUS 功能码: 03,数据起始地址: (NUM-1)*2,数据长度: 2。(NUM 为传感器编号);

- 所有传感器清零操作: MODBUS 功能码: 06,数据地址: 2048,数据内容: AB56(十六进制)。备注: 西门子 PLC 写入地址为: 42049;
- 单独置零操作: MOBUS 功能码: 06,数据地址: (NUM-1)*2,数据内容: AB56 (十六进制)。(NUM 为 传感器编号)。

1) 查询位移数据

说明	读取命令: 03									
	读取数据	读取数据地址: 00(西门子 PLC: 40001)								
	读取数据	读取数据长度: 08								
序号	1 2 3 4 5 6 7 8 9							9		
发送格式	地址	03	00	00	00	08	CRC_L	CRC_H		
序号	1	2	3	4~7	8~11	12~15	16~19	20	21	
回复格式	地址	03	10	Dat1	Dat2	Dat3	Dat4	CRC_L	CRC_H	
	其中, I	Oat1~Dat4	分别为1~	4 号传感器	8位移数据	, 每个数	据占用4	个字节		
发送举例	10 03 00	00 00 08 4	7 4D							
回复举例 1	10 03 10	00 00 00 00	0 00 00 00	00 01 00 0	0 0A 00 00	00 00 44 A	AΒ			
	0100 00 0	0100 00 0A 表示 -0.01mm,数据格式为"01", 见 4-3-4								
回复举例 2	10 03 10	00 00 00 00	0 00 00 00	00 FF FF I	FF FF 00 00	0 00 00 5D	76			
	FF FF FF	FF 表示-0	0.001mm,	数据格式	为"FF",	见 4-3-4				

多路测微计读取命令:

读 1~8 号测微计数据: 10 03 00 00 00 10 47 47 读 1~12 号测微计数据: 10 03 00 00 00 18 46 81 读 1~16 号测微计数据: 10 03 00 00 00 20 47 53

单个测微计读取命令:

读 1 号测微计数据: 10 03 00 00 00 02 C7 4A 读 2 号测微计数据: 10 03 00 02 00 02 66 8A 读 3 号测微计数据: 10 03 00 04 00 02 86 8B 读 4 号测微计数据: 10 03 00 06 00 02 27 4B

2) 清零

说明	写入命令	: 06							
	写入地址	写入地址: 01FFH(十六进制) 511(十进制)							
	写入数据: 0000H(十六进制)								
序号	1	2	3	4	5	6	7	8	
发送格式	地址	06	01	FF	00	00	CRC_L	CRC_H	
回复格式	地址	06	01	FF	00	00	CRC_L	CRC_H	
发送举例	10 06 01 FF 00 00 BB 47								
回复举例	10 06 01	FF 00 00 B	BB 47						

单个测微计清零命令:

对 1 号测微计清零: 10 06 00 00 00 00 8A 8B 对 2 号测微计清零: 10 06 00 02 00 00 2B 4B 对 3 号测微计清零: 10 06 00 04 00 00 CB 4A 对 4 号测微计清零: 10 06 00 06 00 00 6A 8A

3) 内部参数读取

读取命令: 03							
读取数据地址: 3030H(十六进制) 12336 (十进制)							
读取数据长度: 02							
9							
L CRC_H							
元校验)							
表示 9600,							
00 表示 4800)							

4) 外部确认:

说明	当端口 X	(4 和电源)	负极 GND	短路保持	则显示盒确认当前数据主动上传测微计					
175	数据,见	数据,见 3-1								
序号	1	2	3	4~7	8~11	12~15	16~19	20	21	
上传格式	地址	83	04	Dat1	Dat2	Dat3	Dat4	CRC_L	CRC_H	
	其中, Dat1~Dat4 为传感器位移数据									
上传举例	10 83 10	00 00 00 00	0 00 00 00	00 00 00 0	0 00 00 0	0 00 00 34 8	E	>		

5) 密钥命令:

说明	写入命令	: 06							
	写入地址	: 7010H	[(十六进制	2868	8(十进制)			
	写入数据	: AB561	H(十六进	制)	-30				
序号	1	2	3	4	-5	6	7	8	
发送格式	地址	06	70	10	AB	56	CRC_L	CRC_H	
回复格式	地址	06	08	00	AB	56	CRC_L	CRC_H	
发送举例	10 06 70	10 AB 56 6	5E 80						
回复举例	10 06 70 10 AB 56 6E 80								
备注	修改集线	盒参数前	必须先发	密钥命令,	再发下述	修改命令	才能做到挥	电保存	

6) 修改地址

说明	写入命令	: 06					5	11/15	
	写入地址	: 3031H(十六进制)	12337	(十进制)				
	写入数据	: 新地址	(1~254)						
序号	1	2	3	4	5	6	7	8	
发送格式	旧地址	06	30	31	00	新地址	CRC_L	CRC_H	
回复格式	旧地址	06	30	31	00	新地址	CRC_L	CRC_H	
发送举例	10 06 30	31 00 02 5	5 85			1/-			
回复举例	10 06 30	31 00 02 5:	5 85			4			
	地址由1	6 改为 02,	回复命	令后新的设	设置立即生	效			

7) 修改波特率和停止位

说明	写入命令	: 06							
,5,7,	1		十六进制	12336	(十进制))			
	写入数据	写入数据: AB56H (十六进制)							
序号	1	2	3	4	5	6	7	8	
发送格式	地址	06	30	30	停止位	校验位	CRC_L	CRC_H	
						波特率			
回复格式	地址	06	30	30	停止位	校验位	CRC_L	CRC_H	
						波特率			
	第5个字	第5个字节停止位 (1表示2个停止位,0表示1个停止位)							
	第6个字	第6个字节校验位波特率:							
1.300	高 4	位为校验	位 (02表	示 even 偲	校验,01	表示 odd 奇	校验,00 表	表示 no 无核	を验)
17	低 4 位为	低 4 位为波持率 (04 表示 115200,03 表示 38400,02 表示 19200,01 表示 9600,00							
	表示 480	0)					3 .		
发送举例	10 06 30	30 01 02 0	5 D5					130	
回复举例	10 06 30	30 01 02 0	5 D5						
	把停止位	改成2位	,波特率改	友成 19200	,无校验,	回复命令	后新的设置	置立即生效	t t

8) 修改查询模式

说明	写入命令	·: 06						
	写入地址	: 3036Н(十六进制	12342	(十进制)			
	写入数据	: 查询模	式		-(4)			
序号	1	2	3	4	5	6	7	8
发送格式	地址	06	30	36	00	查询	CRC_L	CRC_H
						模式		
回复格式	地址	06	30	36	00	查询	CRC_L	CRC_H
						模式		
	查询模式 =0,表示实时值模式							
	查询模式 =1,表示最大值模式							
	查询模式 =2,表示最小值模式							
1	查询模式	=3,表示	示极差模式	(最大最	小值之差)			

	牙	L 4-2	130
发送举	≦例 10	0 06 30 36 00 01 A4 45	
回复举	≦例 10	0 06 30 36 00 01 A4 45	
	垄	在询模式设置为最大值模式	

附录一:CRC 算法举例

```
unsigned short CRC(unsigned char frame[], int n)

//数组 frame 是 CRC 校验的对象, n 是要校验的字节数
{

    int i, j;
    unsigned short crc, flag;
    crc=0xffff;
    for(i=0;i<n;i++)
    {

        crc^=frame[i];
        for(j=0;j<8;j++)
        {

            flag=crc&0x0001;
            crc>>=1;
            if(flag)
            {

                crc&=0x7fff;
            crc^=0xa001;
            }
        }
        return(crc);
}
```

注: MODBUS CRC 校验码传输是低位在前,高位在后。

6 故障排除

故障	检查	解决办法
	主盒显示是否正常	检查电源
	电脑设备管理器查看 COM, 看电脑是	不能识别, 更换 USB-232 数据线
	否识别 USB-232 数据线?	
主盒连不上电脑	COM 端口号是否大于 16?	换个 USB 口接, 或者更改端口号<16
	GEZTEST 软件是否提示扫描当前	软件不兼容 USB-232 数据线, 更换, 推
	COM 端口号	荐使用本公司生产的 USB-232 数据线
	主盒异常	更换主盒

广东美示通精密量仪有限公司 网站: https://www.mstjm.com

推动测微计数据无	测微计指示灯是否闪动?	更换测微计
变化	更换正常的测微计还是不行?	更换主盒
所有测微计数据无	主盒是否报警 E00100?	更换主盒 🔷
变化	内部查询模块异常?	
清零后数据不为0	检查预设值是否设置不为0	设置预设值为0
功能异常		恢复出厂设置
数据不准确		更换测微计
无输出	M1 灯是否点亮?	部分故障发生时停止输出
显示 E10000	外部输出电流过大	检查外部输出负载
显示 E00100	对应编号的测微计通讯异常	更换测微计,如果不是不行, 则更换主盒
或 E00200		
或 E00300		
或 E00400		
显示 E001xx	xx 号分盒通讯故障	更换 xx 号分盒
	如果只接1个分盒?	更换分盒后如果不行更换主盒

